PROPOSTA DE PROTOCOLO DE ENSAIO PARA ANÁLISE DE REGENERAÇÃO EM MISTURAS ASFÁLTICAS ATRAVÉS DO MODELO S-VECD

Felipe do Canto Pivetta¹ Luis Alberto Herrmann do Nascimento² Lélio Antônio Teixeira Brito¹

¹Laboratório de Pavimentação LAPAV – UFRGS ²Centro de Pesquisas Leopoldo Américo Miguez de Mello CENPES - PETROBRAS

RESUMO

Os fenômenos associados aos efeitos de fadiga e regeneração viscoelástica de materiais asfálticos têm sua importância já reconhecida em diversos trabalhos. O presente estudo aplica o modelo S-VECD para o ensaio de fadiga à tração direta em deformação controlada de misturas asfálticas, com a inserção de períodos de repouso para a análise de regeneração. A partir dos dados obtidos em diferentes períodos de repouso, temperaturas de ensaio e níveis de integridade do material, apresenta-se uma variável de estado de regeneração (H) capaz de modelar estas condições em um parâmetro único. A inserção desta variável de estado em um modelo que quantifica a regeneração do material (%H_s) no espaço da sua curva característica de dano – C *versus* S – fornece uma ferramenta que prevê com precisão o índice de regeneração da mistura avaliada.

ABSTRACT

The phenomena associated with fatigue and healing of asphalt materials have their importance already recognized in several works. The present study applies the S-VECD model for direct tensile fatigue test in controlled strain for asphalt mixtures, with the insertion of rest periods for healing analysis. From different rest periods, test temperature and material pseudo-stiffness levels, an internal state variable of healing (H) capable of modeling these conditions into a single parameter is proposed. The insertion of this internal state variable in a model that quantifies the material healing ($%H_s$) in the characteristic damage curve space of the material - C versus S - provides a tool that accurately predicts the healing index of the evaluated mixture.

1. INTRODUÇÃO

O uso de concreto asfáltico como camada de revestimento em pavimentos rodoviários constitui uma das técnicas mais utilizadas no Brasil e no mundo, de forma que uma correta compreensão das respostas deste material quanto às solicitações de tráfego, constitui uma importante ferramenta na capacidade de otimização do seu uso. Dentre as principais causas de deterioração em pavimentos, destacam-se o fenômeno de deformação permanente e, no escopo deste trabalho, o trincamento por fadiga.

A fadiga em revestimentos asfálticos consiste no desenvolvimento de trincas de pequenas dimensões, ou micro-trincas, que se iniciam quando a estrutura se encontra sob carregamento e estendem-se por toda a vida útil deste pavimento enquanto houverem solicitações. Conforme o carregamento é continuado, a quantidade de trincas aumenta de forma que, eventualmente, estas micro-trincas venham a coalescer em trincas de maiores dimensões, causando, em situações mais evoluídas, a falha estrutural e/ou funcional do material. Em camadas de revestimento asfáltico, este tipo de falha ou defeito se chama "Couro de Jacaré" (Bernucci *et al.* 2008).

Alguns materiais, como polímeros e ligantes asfálticos, quando micro-trincados, apresentam uma resposta denominada regeneração ou, do inglês, *healing*, que pode ser considerada como o fenômeno inverso ao trincamento (Kim *et al.* 1997). A regeneração consiste em uma resposta intrínseca de fechamento de trincas de pequenas dimensões quando o material é submetido a períodos de carregamento nulo, denominados períodos de repouso. Este fenômeno se manifesta na forma de tendência a recuperar as propriedades que o material

possuía quando em sua condição não danificada sendo que em determinadas condições é suficientemente significativo para restaurar o material até seu estado inicial.

Uma das técnicas com crescente importância no cenário de análise do comportamento à fadiga de materiais viscoelásticos é o modelo Viscoelástico com Dano Contínuo Simplificado ("Simplified-Viscoelastic Continuum Damage" – S-VECD) apresentado por Underwood et al. (2010), baseado na mecânica do modelo Viscoelástico com Dano Contínuo ("Viscoelastic Contínuum Damage" – VECD) proposto por Kim e Little (1990). Esta técnica vem sendo cada vez mais utilizada nas últimas décadas e seus resultados têm provado sua eficiência e robustez.

No Brasil, o modelo VECD vem sendo utilizado por instituições de pesquisa desde 2013. Além do seu uso na caracterização de misturas asfálticas, o modelo foi implantado em *framework* computacional para a análise do dano em pavimentos, o qual encontra-se já validado e calibrado para as condições brasileiras (Nascimento, 2015).

O presente trabalho tem como objetivo estabelecer o protocolo de ensaio uniaxial de tração direta para a caracterização do dano e da regeneração de misturas asfálticas, na expectativa de prever adequadamente o seu comportamento quando submetidas a carregamentos cíclicos sucedidos por períodos de repouso, em diferentes temperaturas, com uso do modelo S-VECD.

2. REVISÃO BIBLIOGRÁFICA

A regeneração de materiais viscoelásticos está intimamente vinculada a características como histórico de tensões, composição química, temperatura e estado de integridade do material; períodos de solicitação nula (ou, simplesmente, períodos de repouso) servem como hiatos para rearranjo dos materiais de forma a regenerar parte de sua competência mecânica.

Diversos autores estudaram o efeito da inserção de períodos de repouso em meio a solicitações de ensaios tradicionais da análise de fadiga (Castro e Sánchez, 2006; Kim *et al.*, 2002; Kim *et al.*, 2003; Shen *et al.*, 2010; Palvadi *et al.*, 2012; Qiu *et al.*, 2012; Ashouri, 2014), como nos ensaios de flexão a três pontos (Castro e Sánchez, 2006), flexão a quatro pontos, no ensaio cíclico de cisalhamento por torsão (Kim *et al.*, 2002; Kim *et al.*, 2003; Shen *et al.*, 2012) e no ensaio de tração direta (Qiu *et al.*, 2012; Ashouri, 2014). Embora estes autores tenham, com êxito, identificado e descrito a capacidade de regeneração através de parâmetros como módulo dinâmico, energia dissipada e pseudo-rigidez (Kim *et al.*, 2002), este é um fenômeno de previsão bastante complexa

2.1. Regeneração em misturas asfálticas

Autores como Ayar *et al.* (2016) mencionam que o fenômeno de regeneração está puramente relacionado ao efeito de fechamento de trincas de pequenas dimensões, operando de forma a se contrapor ao dano. Este processo de fechamento de trincas é descrito através de cinco etapas distintas (Wool, 2008) – Rearranjo Superficial, Aproximação Superficial, Umedecimento, Difusão e Aleatorização. O processo de regeneração inicia ativamente na etapa de umedecimento que, embora tenha resultados pouco significativos no ganho de rigidez (Wool, 2008), é responsável pela velocidade com que irá ocorrer o entrelaçamento de fibras do material na etapa de difusão, na qual o ganho de rigidez é muito mais significativo.

Babadopolus (2017) investiga o efeito de fenômenos como tixotropia, viscoelasticidade nãolinear e dissipação de energia por aquecimento, que alteram a rigidez do material de maneira reversível. Este trabalho assume que o efeito regenerativo estudado engloba os fenômenos que recuperam a rigidez do material perdida durante o carregamento cíclico, independentemente da origem desta variação – tixotropia, não-linearidade, aquecimento e dano. Esta abordagem é comum a outros trabalhos que também realizaram estudos similares no espaço C vs. S (Kim *et al*, 1997; Palvadi *et al.*, 2012; Ashouri, 2014).

2.2. Modelo VECD

Lee e Kim (1998) aplicam os princípios da termodinâmica dos processos irreversíveis e da correspondência elástico-viscoelástico de Schapery para descrever o comportamento de misturas asfálticas em carregamentos cíclicos axiais, considerando a evolução de dano. Este estudo utiliza os princípios do modelo Viscoelástico de Dano Contínuo (VECD), que objetiva uma descrição macroscópica do comportamento do material ignorando alterações comportamentais em nível microscópico (Underwood *et al.*, 2010).

Uma revisão aprofundada da teoria e metodologia por trás da obtenção da curva característica de dano vai além do escopo deste trabalho, aconselhando-se um estudo dos trabalhos de Schapery (1984), Kim e Little (1990), Kim (1998), Daniel e Kim (2002), Chehab *et al.* (2003), Kim (2009), Morteza (2014), Nascimento (2015) e Mocelin (2018) para uma compreensão mais aprofundada sobre o tema. Entretanto, a formulação básica do modelo dado a partir do princípio da correspondência elástico-viscoelástico (Schapery, 1984), da Teoria do Trabalho Potencial (Schapery, 1990) e do princípio da Superposição tempotemperatura (Chehab *et al.*, 2002), é apresentada no Quadro 1, onde W^R é a pseudo-energia dissipada, ε^{R} é a pseudo-deformação, S é a variável de estado interno de dano, σ é a tensão, α é a taxa de evolução do dano, E_R é o módulo de referência (normalmente adotado como unitário), E(t) é o módulo de relaxação viscoelástico linear, t é o tempo físico, ε é a deformação medida, ξ é o tempo reduzido e a_t é o *shift-factor* para as condições de ensaio.

ORIGEM	EQUACIONAMENTO	TÍTULO	
Teoria do Trabalho Potencial	$W^R = f(\varepsilon^R, S)$	Função Energia de Pseudo-Deformação	
	$\sigma = \frac{\partial W^R}{\partial \varepsilon^R}$	Relação Tensão – Pseudo-Deformação	
	$\frac{dS}{dt} = \left(-\frac{\partial W^R}{\partial \varepsilon^R}\right)^{\alpha}$	Lei da evolução do Dano	
Correspondência Elástico-Viscoelástico	$\varepsilon^{R} = \frac{1}{E_{R}} \int_{0}^{t} E(t-\tau) \frac{d\varepsilon}{dt} d\tau$	Pseudo-Deformação	
Superposição tempo-Temperatura	$\xi = \frac{t}{a_t}$	Tempo Reduzido	

Quadro 1: Equacionamento fundamental do modelo VECD

O VECD realiza a descrição do comportamento do material através da curva característica de dano, que define a integridade (C) em função da variável de estado interno de dano acumulado (S). Estes parâmetros são calculados rigorosamente a partir das Equações 1, 2 e 3.

$$C = \frac{\sigma}{\varepsilon^R} \tag{1}$$

em que *C*: integridade [MPa];

σ: tensão [MPa];

 ε^{R} : Pseudo-deformação.

$$dS_i = \left(-\frac{1}{2}\left(\varepsilon^R\right)_i^2 \Delta C_i\right)^{\frac{\alpha}{1+\alpha}} (\Delta\xi)_i^{\frac{1}{1+\alpha}}$$
(2)

em que dS_i : i-ésimo incremento de dano.

$$\alpha = \frac{1}{m} + 1 \tag{3}$$

em que m: máxima inclinação do módulo de relaxação na escala log-log.

3. MATERIAIS E MÉTODOS

3.1. Experimentos

Neste estudo, utilizou-se uma adaptação do ensaio de fadiga uniaxial à tração direta descrito por Nascimento (2015), com inserção de períodos de repouso em momentos específicos do carregamento, determinados a partir do atingimento de níveis relativos, pré-estabelecidos, do módulo inicial da mistura.

Os ensaios foram realizados em uma prensa hidráulica servo-controlada MTS, com carregamento cíclico senoidal de frequência 10 Hz. O carregamento é aplicado no modo deformação controlada "*on-specimen*", onde a deformação axial é medida a partir de dois extensômetros do tipo "faca" com comprimento de haste de 100 mm, acoplados nas paredes axiais do corpo-de-prova formando, radialmente, um ângulo de 180° entre seus pontos de medição, conforme ilustra a Figura 1.c.

O critério de inserção de períodos de repouso é determinado pelo módulo dinâmico/rigidez, monitorando-se o mesmo em tempo real ao longo do ensaio. Os valores de integridade (C) de inserção de períodos de repouso foram de: 0,9, 0,8, 0,7, 0,6, 0,5, 0,4, 0,3, 0,2 e 0,1 para fins de verificação da abrangência do fenômeno em relação a diferentes níveis de dano. O valor inicial de módulo dinâmico, utilizado como referência, é determinado em um ensaio prévio de mesma temperatura, no qual é aplicado um carregamento cíclico de frequência de 10 Hz, com deformação de 60 microstrains, baixa o suficiente para que não haja dano.

O procedimento experimental compôs um grupo de nove condições de ensaio, variando-se temperatura e período de repouso, conforme a Tabela 1. Os períodos de repouso foram escolhidos de forma que a aplicação da Superposição tempo-Temperatura gerasse um espectro amplo de períodos de repouso reduzidos, com sobreposição de valores nas extremidades.

Temperatura	Período de Repouso	Período de Repouso Reduzido			
(° C)	(s)	(s)			
	10	1,9			
15	60	11,4			
	270	51,2			
	10	9,9			
20	30	29,6			
	270	266,1			
	10	219,1			
30	30	657,2			
	270	5915,1			

Tabela 1: Condições de temperatura e período de repouso

3.2. Características da Mistura Asfáltica

Os corpos de prova utilizados neste experimento foram de mistura asfáltica densa, com agregados da pedreira Sepetiba, de tamanho nominal máximo de 19 mm e Cimento Asfáltico de Petróleo (CAP) do tipo 30/45. A dosagem foi realizada segundo metodologia AASHTO M-323, com compactador giratório e número de giros de projeto de 100. As características volumétricas da mistura são apresentadas na Tabela 2.

Tabela 2: Características da Mistura Asfáltica

Tabela 2. Caracteristicas da Mistaria Astarica					
Teor de	Volume de Vazios de	Volume de Vazios do	Relação	Construction	G _{mm} no
ligante	Projeto	agregado Mineral	betume vazios	densification	N_{ini}
(%)	(%)	(%)	(%)	index - CDI	(%)
4,5	4,0	12,5	67,9	37	88,6

Os corpos de prova têm diâmetro de 100 mm e são moldados com uma altura de 170 mm, dos quais retiram-se por corte 20 mm do topo e da base afim de homogeneizar o volume de vazios nas regiões de extremidade e planificar as faces, deixando-os com 130 mm de altura. Após o corte, os corpos de prova são colados aos pratos de ensaio com o uso de cola epóxi de alta resistência conforme Figura 1.a. A conexão à prensa hidráulica é realizada através do acoplamento de uma rótula rígida de tração no prato superior e de três parafusos, afastados em ângulos de 120°, no prato inferior.

Figura 1: a) Colagem de pratos ao corpo de prova; b) Conjunto pratos e corpo de prova; c) Conjunto acoplado à prensa hidráulica, com extensômetros vinculados ao corpo de prova.

3.3. Determinação da Curva Característica de Dano

Neste estudo, utiliza-se o modelo S-VECD proposto por Underwood *et al.* (2010), que modifica o procedimento analítico até então utilizado na caracterização do modelo VECD, simplificando o processo de caracterização de amostras em carregamento cíclico contínuo.

As adaptações propostas por Underwood et al. (2010) assumem que, ao longo de ensaios cíclicos uniaxiais de tração direta, o dano ocorre somente nas solicitações de tração. Dessa forma, insere-se no equacionamento S-VECD o fator de forma (β) que avalia quanto do carregamento aplicado que se encontra sob tração. O parâmetro β é definido pela Equação 4.

$$\beta = \frac{\sigma_{pico} + \sigma_{vale}}{|\sigma_{pico}| + |\sigma_{vale}|}$$
(4)

em que

β:

 $\sigma_{\rm pico}$:

 σ_{vale} :

 E_R :

 ε_{pp} :

fator de forma; valor máximo de tensão no ciclo avaliado [MPa]; valor mínimo de tensão no ciclo avaliado [MPa].

Esta alteração permite a simplificação apresentada na Equação 5,

$$\varepsilon_{ta}^{R} = \frac{\beta + 1}{2E_{R}} \left((\varepsilon_{pp}) \cdot |E^{*}|_{LVE} \right)$$
(5)

em que

 ε^{R}_{ta} : amplitude da pseudo-deformação de tensão; módulo de referência [Mpa]; magnitude de deformação pico-a-pico;

módulo dinâmico viscoelástico linear [MPa]. $|E^*|_{LVE}$:

Conforme mencionado, o dano ocorre somente em solicitações de tração. Entretanto, este dano acontece apenas durante uma fração destes ciclos. Para lidar com esta condição, inserese o fator K₁, determinado a partir da Equação 6.

$$K_{1} = \frac{1}{\xi_{f} - \xi_{i}} \int_{\xi_{i}}^{\xi_{f}} (q(\xi))^{2\alpha} d\xi$$
(6)

 K_1 : fator de ajuste; em que

q(t): histórico de carregamento.

$$\xi_i = \frac{\cos^{-1}(\beta)}{2\pi f} \tag{7}$$

 ξ_i : tempo reduzido de início do dano no cíclo [s]; em que

f: frequência de oscilação do carregamento [Hz].

$$\xi_f = \frac{1}{f} - \frac{\cos^{-1}(\beta)}{2\pi f}$$
(8)

 ξ_f : tempo reduzido de parada do dano no cíclo [s]. em que

Estas simplificações são aplicadas quando o comportamento do material entra em regimepermanente. Sendo assim, para o primeiro ciclo de carregamento calcula-se a pseudodeformação através da integral de convolução apresentada no Quadro 1. Para os ciclos subsequentes, pode-se utilizar a Equação 5, de maneira que a evolução de dano passa a ser determinada através da Equação 9.

$$dS_i = \left(-\frac{1}{2}\left(\varepsilon_{ta}^R\right)_i^2 \Delta C_i^*\right)^{\frac{\alpha}{1+\alpha}} \left(\Delta \xi_p\right)_i^{\frac{1}{1+\alpha}} (K_1)^{\frac{1}{1+\alpha}}$$
(9)

em que *C*:* integridade de carregamento cíclico;

 ξ_p : intervalo de tempo reduzido do pulso de carga [s].

Como o procedimento de ensaio envolve períodos que interrompem os efeitos que definem um estado de regime permanente, a caracterização da curva de dano para cada etapa pósrepouso assume que o primeiro ciclo tem comportamento transitório com grande acúmulo de dano. Desta forma, o cálculo das pseudo-deformações é realizado pela integral de convolução no ciclo inicial e então, assumindo um novo estado de regime permanente, aplicam-se as simplificações comentadas anteriormente para os ciclos subsequentes, até que se inicie o próximo período de repouso.

4. RESULTADOS E DISCUSSÕES

4.1. Curva Característica de Dano com Períodos de Repouso

A transformação dos dados de tensão e deformação coletados durante o ensaio em curva característica de dano (C vs. S), com a inclusão dos períodos de repouso, através da metodologia descrita na sessão anterior, gera curvas descontínuas com formatos similares ao apresentado na Figura 2. A Figura 2 apresenta os resultados para o ensaio realizado nas condições de 30° C com 270 segundos de período de repouso, situação em que a capacidade de regeneração da mistura, teoricamente, apresenta os melhores resultados dentre as condições avaliadas, indicando-se o número de ciclos (N) para cada par de pontos de repouso e de retorno à integridade de repouso.

temperatura de 30° C

Destaca-se, nesta etapa, o ganho de integridade imediatamente após o repouso, ilustrando as consequências dos períodos de repouso no espaço C vs. S. Embora a integridade seja

recuperada a valores bastante elevados, a alta inclinação do conjunto de pontos correspondentes ao primeiro ciclo indicam um comportamento transitório bastante sensível, dissipando rapidamente estas elevadas variações de C. Observa-se que a inclinação média, referente ao período transitório tende a diminuir para valores mais elevados de N. Uma vez que o material chegue ao mesmo nível de integridade que possuía previamente ao repouso, a trajetória da integridade em função do dano volta a seguir o comportamento da curva C vs. S sem períodos de repouso, modificada apenas por um deslocamento ΔS_{Hi} no eixo S.

4.2. Capacidade de Regeneração

A inserção dos períodos de repouso pode ter seu efeito avaliado através do número de ciclos até ruptura (N_f). A Figura 3 presenta resultados da vida de fadiga para ensaios com períodos de repouso de um conjunto de 9 corpos de prova, necessários para o protocolo apresentado. Observa-se a influência deste efeito que, dependendo das condições de temperatura e período de repouso, pode promover um significativo prolongamento na vida de fadiga (25% para 30° C e 270 s). Os valores de N_f apresentados para a condição sem períodos de repouso são obtidos a partir do deslocamento da curva C vs. N de cada corpo de prova.

Temperatura de ensaio e período de repouso

Figura 3: Resultados dos ensaios cíclicos: prolongamento na vida de fadiga com e sem períodos de repouso para as condições do protocolo apresentado

Ashouri (2014) apresenta possíveis índices para medir a capacidade de regeneração no espaço C vs. S, um dos quais, adequado para este estudo é dado pela Equação 10:

$$\%H_S = \frac{\Delta S_{H_i}}{S_{C_i}} \times 100 \tag{10}$$

em que $\%H_S$:índice de regeneração; ΔS_{Hi} :variação de dano entre pontos de mesma integridade; Sc_i :dano na integridade de repouso;

Estes índices, calculados para a curva apresentada na Figura 2 são dados na Tabela 3.

 Tabela 5: Resultados de indice de regeneração para 50°C e 270 s de repouso					
 С	S_{Ci}	S _{Cf}	ΔS	%Hs	
0,90	7206	13938	6731	93,4	
0,80	23362	38585	15222	65,2	
0,70	55583	79056	23473	42,2	
0,60	101680	131374	29693	29,2	
0,50	161947	195179	33232	20,5	
0,40	228118	266311	38192	16,7	
0,30	300170	342322	42151	14,0	

Tabela 3: Resultados de índice de regeneração para 30° C e 270 s de repouso

A Figura 4.a apresenta o comportamento do índice de regeneração em função da integridade para as temperaturas avaliadas, no período de repouso em que os efeitos são mais significativos – 270 s. A aproximação exponencial ilustrada apresenta uma boa correlação com a tendência dos pontos experimentais. De interesse em uma curva unívoca e contínua representativa do índice de regeneração, deslocam-se as integridades das temperaturas de 30° e 15° C em torno da temperatura de 20° C (tomada como referência). Esta relação é apresentada na Figura 4.b, com coeficientes multiplicadores de C de 1,42 e 0,85 para 30° e 15° C, respectivamente, resultando em uma alta correlação.

Figura 4: a) Potencial de healing em função da integridade; b) Curva mestra unívoca de %Hs

Deslocando-se os períodos de repouso através dos shift-factors (oriundos do ensaio de módulo dinâmico) das temperaturas de 30° e 15° C – 0,0456 e 5,28, respectivamente – obtêm-se a relação entre os fatores de deslocamento de integridade e o período de repouso na temperatura de referência. Esta relação é expressa na Figura 5, permitindo a previsão do fator de deslocamento de *healing* em qualquer condição de repouso e temperatura a partir do shift-factor.

Figura 5: Fator de deslocamento período de repouso reduzido em 20° C

4.3. Modelo de Previsão de *healing* Proposto

A partir das operações apresentadas anteriormente propõe-se uma variável de estado de regeneração (H), relacionando a temperatura, o período de repouso e a integridade em um

parâmetro único, permitindo a descrição do comportamento regenerativo de cada mistura asfáltica. Esta variável de estado é apresentada na Equação 11.

$$H = a. \left(\frac{PR}{a_T}\right)^b. C \tag{11}$$

em queH:variável de estado de *healing*;a, b:constantes de calibração do modelo;PR:período de repouso [s].

Esta variável de estado, H, é introduzida em um modelo de aproximação de formato exponencial, dado pela Equação 12, que prevê o índice de regeneração para as condições de interesse.

$$\%H_{\rm S} = \alpha. \, e^{\beta.H} \tag{12}$$

em que α , β :constantes de calibração do modelo.

Neste ponto, remarca-se que o modelo prevê maiores tendências de recuperação de módulo para situações de maior integridade, dada a proporcionalidade entre H e C. A partir dessa observação, espera-se que ao longo da vida de fadiga de uma determinada amostra o fenômeno torne-se gradativamente menos significativo, dominantemente em valores intermediários dentro de sua capacidade total.

Aplicando-se o modelo ora proposto à mistura avaliada neste trabalho, pode-se verificar o potencial de previsão do protocolo, comparando os resultados teóricos ao modelo calibrado. A calibração dos parâmetros de modelagem foi realizada através da minimização do erro quadrático. O resultado desta modelagem é apresentado na Figura 6.

Figura 6: a) Comparação entre índice de regeneração previsto e experimental; b) Índices de regeneração experimental e previsto em função da variável de estado H.

5. CONCLUSÕES

A abordagem do efeito de regeneração utilizada neste trabalho, através do modelo S-VECD, propôs uma metodologia adaptada ao ensaio de fadiga à tração direta, simplificando a morosa tarefa de inclusão de períodos de repouso para a caracterização de *healing*. A partir dos resultados obtidos e das operações realizadas, destacam-se as seguintes observações:

- A utilização da metodologia proposta se mostra adequada em termos de utilização de tempo, visto que para cada par período-de-repouso/temperatura ensaiado, são inseridos no máximo nove intervalos durante o ensaio, gerando uma extensão de duração do ensaio pequena quando comparada com metodologias que trabalham com períodos de repouso intermitentes à cada ciclo de carregamento;
- Os altos valores de integridade calculados no período transitório, ilustrados na Figura 2, não influenciam nos resultados de índice de *healing* (%H_S Equação 10), uma vez que este é calculado a partir de variações no espaço de dano (S);
- As modelagens realizadas apresentam altos valores de coeficientes de determinação com os efeitos avaliados, indicando aproximações matemáticas adequadas e tendências confiáveis para extrapolações e análises intermediárias aos pontos experimentais. Tais observações indicam, também, uma baixa variabilidade dos resultados de *healing* entre as amostras;
- A variável de estado de *healing* (H), ora apresentada, se mostrou compatível com a análise desenvolvida, traduzindo os efeitos de temperatura, período de repouso e nível de dano em um parâmetro único;
- O modelo proposto e utilizado para modelagem do índice de regeneração (%H_s) descreve de maneira confiável e precisa os dados experimentais, através da variável de estado H, indicando potencial para ser incorporado a previsões que envolvam efeitos regenerativos de misturas asfálticas;
- As temperaturas de 15° e 20° C conduzem a resultados bastante próximos entre si e até sobrepostos em algumas das análises, sugerindo que estas temperaturas podem ser reestudadas ou redefinidas em uma futura adaptação deste ensaio;
- Muitos dos ensaios tiveram sua ruptura por fadiga em integridades superiores à 0,4, comprometendo a qualidade dos dados a partir deste ponto e tornando algumas das condições ensaiadas pouco representativas. Considera-se a redefinição das integridades de repouso para uma nova versão do protocolo de ensaio, melhor explorando dados e condições prévios à ruptura.

Estes resultados fazem parte de um estudo ainda em desenvolvimento, onde as próximas etapas contam com a incorporação dos efeitos de regeneração em soluções analíticas; redução do número de corpos de prova necessários para descrição do efeito e caracterização do modelo proposto; aplicação dos resultados em misturas com diferentes tipos de ligante, agregado mineral e composição granulométrica; e avaliação do efeito do *healing* em análises de pavimentos.

Agradecimentos

Os autores agradecem ao Programa Especial de Treinamento em Engenharia Rodoviária (PETER) pelo apoio; ao corpo técnico e estrutura do Centro de Pesquisas Leopoldo Américo Miguez de Mello (CENPES - PETROBRAS); ao corpo técnico e estrutura do Laboratório de Pavimentação (LAPAV - UFRGS).

REFERÊNCIAS BIBLIOGRÁFICAS

- Ashouri, M. (2014) Modeling Microdamage Healing in Asphalt Pavements Using Continuum Damage Theory. Tese de Doutorado, North Carolina State University.
- Ayar, P., Moreno-Navarro, F., e Rubio-Gámez, M. C. (2016) The Healing Capability Of Asphalt Pavements: A State Of The Art Review. Journal of Cleaner Production, 113, 28–40.
- Babadopulos, L. (2017) Phenomena occurring during cyclic loading and fatigue tests on bituminous materials : Identification and quantification. Tese de Doutorado, L'Ecole Nationale des Travaux Publics de l'Etat.
- Bernucci, L. B., Goretti da Motta, L., Augusto Pereira Ceratti, J., e Barbosa Soares, J. (2008) Pavimentação asfáltica: Formação básica para engenheiros. (1a ed.). Rio de Janeiro.
- Castro, M., e Sánchez, J. A. (2006) Fatigue and Healing of Asphalt Mixtures: Discriminate Analysis of Fatigue Curves. Journal of Transportation Engineering, 132(2), 168–174
- Chehab, G. R., Kim, Y. R., Schapery, R. A., Witczak, M. W., e Bonaquist, R. (2002) Time-temperature superposition principle for asphalt concrete with growing damage in tension state. Asphalt Paving Technology, 71, 559–593.
- Kim, Y.R. (2009) Modeling of Asphalt Concrete. Mc Graw Hill.
- Kim, Y.R., Little, D. N., e Lytton, R. L. (2003) Fatigue and Healing Characterization of Asphalt Mixtures. Journal of Materials in Civil Engineering, 15(1), 75–83.
- Kim, Y. R., Daniel, J. S., e Wen, H. (2002) Fatigue Performance Evaluation of Westrack Asphalt Mixtures Using Viscoelastic Continuum Damage Approach.
- Kim, Y.R., Lee, H.J. e Little D.N. (1997) Fatigue Characterization of Asphalt Concrete Using Viscoelasticity and Continuum Damage Theory. Journal of the Association of Asphalt Paving Technologists, 66, 520– 569.
- Kim, Y.R., e Little, D. N. (1990) One-dimensional constitutive modeling of asphalt concrete. ASCE Journal of Engineering Mechanics, 116(4), 751–772.
- Lee, H.J., e Kim, Y. R. (1998) Viscoelastic Constitutive Model for Asphalt Concrete under Cyclic Loading. Journal of Engineering Mechanics, 124(1), 32–40.
- Mocelin, D. M. (2018) Avaliação do Comportamento à Fadiga de Misturas Asfálticas Quentes e Mornas Através do Modelo de Dano Contínuo Viscoelástico. Tese de Doutorado, Universidade Federal do Rio Grande do Sul.
- Nascimento, L. A. H. (2015) Implementation and Validation of the Viscoelastic Continuum Damage Theory for Asphalt Mixture and Pavement Analysis in Brazil. Tese de Doutorado, North Carolina State University.
- Nguyen, Q. T. (2011) Comportement thermomécanique des enrobés bitumineux sous sollicitations cycliques dans les domaines linéaire et non-linéaire. Tese de Doutorado, L'Ecole Nationale des Travaux Publics de l'Etat.
- Palvadi, N. S., Bhasin, A., e Little, D. N. (2012) Method to Quantify Healing in Asphalt Composites by Continuum Damage Approach. Transportation Research Record: Journal of the Transportation Research Board, 2296(1), 86–96.
- Qiu, J., van de Ven, M., Wu, S., Yu, J., e Molenaar, A. (2012) Evaluating Self Healing Capability of Bituminous Mastics. Experimental Mechanics, 52(8), 1163–1171.
- Schapery, R. A. (1990) A theory of mechanical behavior of elastic media with growing damage and other changes in structure. Journal of the Mechanics and Physics of Solids, 38(2), 215–253.
- Schapery, R. A. (1984) Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media. International Journal of Fracture, 25(3), 195–223.
- Shen, S., Airey, G. D., Carpenter, S. H., e Huang, H. (2013) Road Materials and Pavement Design A Dissipated Energy Approach to Fatigue Evaluation A Dissipated Energy Approach to Fatigue Evaluation. Road Materials and Pavement Design, 37–41.
- Shen, S., Chiu, H.-M., e Huang, H. (2010) Characterization of Fatigue and Healing in Asphalt Binders. Journal of Materials in Civil Engineering, 22(9), 846–852.
- Underwood, B. S., Kim, Y. R., e Guddati, M. N. (2010) Improved calculation method of damage parameter in viscoelastic continuum damage model. International Journal of Pavement Engineering, 11(6), 459–476.
- Wool, R. P. (2008) Self-healing materials: a review. Soft Matter, 4(3), 400-418.

Felipe do Canto Pivetta (fcpivetta@hotmail.com)