INFLUENCIA DO RESÍDUO DE CCA EM SUBSTITUIÇÃO AO CIMENTO NO CONCRETO DOSADO PARA PEÇAS DE PAVIMENTOS INTERTRAVADOS

Adriana Goulart dos Santos Henrique Franzener Hyppolito

Universidade de Estado de Santa Catarina Centro de Ciências Tecnológicas - Departamento de Engenharia Civil

RESUMO

A cinza de casca do arroz (CCA) se trata de um resíduo agroindustrial, a literatura indica que esse material pode ser adicionado ao concreto em porções reduzidas no lugar do cimento, por se tratar de um material pozolânico. Sob este enfoque, a pesquisa teve como objetivo avaliar a resistência à compressão axial e a absorção de água de peças de concreto para pavimentação e produzidas a partir da substituição parcial de cimento por CCA. Para isso, foi definido um traço de referência sem a presença de CCA e, a partir daí, feita a substituição do cimento por CCA nas proporções de 5%, 15% e 25%. Através dos resultados dos testes de resistência e absorção de água, constatou-se uma melhora no desempenho do concreto dosado nas proporções de substituição de 5%.

1. OBJETIVO

Avaliar a resistência à compressão axial e absorção de água de peças de concreto para a construção de pavimentos intertravados produzidas com cinzas de casca de arroz (CCA) e verificar se estes valores atendem os critérios mínimos estipulados na norma NBR 9781 (ABNT, 2013).

2. MATERIAIS E MÉTODOS

A cinza de casca de arroz foi fornecida pela indústria Urbano Agroindustrial, situada na cidade de Jaraguá do Sul-SC. As características físicas dos agregados naturais foram determinadas a partir dos seguintes ensaios: massa específica aparente, massa específica, granulometria, massa unitária, módulo de finura e diâmetro máximo característico. A etapa seguinte consistiu na determinação do traço do concreto contendo diferentes porcentagens de CCA em substituição ao cimento, de 5%, 15% e 25%. A moldagem das peças foi realizada de forma manual utilizando uma mesa vibratória e um molde que atende as especificações de dimensões da peça prescritas pela NBR 9781 (ABNT, 2011). A NBR 9781 (ABNT, 2013), que normatiza a utilização de peças de concreto para pavimentação, estabelece valores de resistência à compressão entre 35 e 50 MPa, conforme o tipo e a intensidade do tráfego de veículos solicitados ao pavimento.

3. APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

3.1 CARACTERÍSITICAS FÍSICAS DOS AGREGADOS

Os resultados dos ensaios de caracterização física dos agregados indicaram que o agregado graúdo natural possui massa específica aparente e massa unitária, respectivamente, de 2,91 g/cm³ e 1,439 g/cm³. O agregado miúdo natural foi utilizado em duas granulometrias distintas, a de areia fina e média. A areia fina possuiu massa específica aparente e massa unitária, respectivamente, de 2,55 g/cm³ e 1,446g/cm³. Já a areia média possuiu massa específica aparente e massa unitária, respectivamente, de 2,57 g/cm³ e 1,467g/cm³. Do ensaio de granulometria obteve-se que os módulos de finura das areias fina e média são, respectivamente, de 0,75 e 2,17. Os diâmetros máximos das areias, fina e média, são, respectivamente, iguais a 1,18mm e 4,75mm.

3.2 DETERMINAÇÃO DA DOSAGEM DO CONCRETO

A dosagem do concreto utilizando somente agregados naturais seguiu a seguinte proporção: 1: 0,57:1,74: 1,18: 0,44 (cimento: areia fina: areia média: pedrisco: água). Este é o traço de referência para o estudo e teve como base o estudo de Teixeira (2015). A partir desse traço foram determinados mais três com substituição do cimento pela CCA nas proporções de 5%. 15% e 25%, em massa.

3.3 RESISTÊNCIA À COMPRESSÃO E ABSORÇÃO DE ÁGUA.

O procedimento dos ensaios seguiram as recomendações preconizadas pela norma NBR 9781 (ABNT, 2013). Para o ensaio de resistência a compressão as peças foram curadas em câmera úmida até um dia antes de serem ensaiados na idade de 28 dias. A tabela 1 apresenta a resistência máxima correspondente a média dos resultados de ensaios de 6 peças de concreto para cada traço avaliado. Na tabela 1 também estão apresentados os resultados do ensaio de absorção de água que correspondem a média de resultados de ensaios de 3 peças de concreto para cada traço avaliado.

Porcentagem de CCA em substituição ao cimento	Resistência Máxima (MPa)	Absorção de água (%)
0%	29,19	6,13
5%	35,09	4,54
15%	25,57	5,64
25%	9,53	14,32

Tabela 1 – Resultados dos ensaios de resistência à compressão e de absorção de água

4. CONCLUSÕES

A maior resistência à compressão foi atingida pelas peças com 5% de CCA em sua composição, sendo essa a única série que atingiu resistências de 35 MPa, indicada para o tráfego de veículos. Quanto aos resultados do ensaio de absorção de água a adição de 5% e 15% de CCA ajudou a reduzir a absorção das peças. Tal fato confirma o exposto por Mehta e Monteiro (2014), que menciona que a utilização de materiais pozolânicos tendem a diminuir os vazios e, por consequência, a absorção de água das peças. Esse parâmetro é muito importante para materiais de pavimentação, uma vez que a infiltrações danificam a base do pavimento gerando patologias. Com o desenvolvimento deste trabalho, concluiu-se que houve uma melhora nos resultados de resistência à compressão e absorção de água nas peças com substituição de até 15% de cimento por CCA. Por fim, deve-se ressaltar que a adoção de práticas sustentáveis geram economias que não podem ser contabilizadas, uma vez que garantem a preservação de recursos materiais e do planeta para as gerações futuras.

Referências bibliográficas

ABNT. Associação Brasileira de Normas Técnicas. NBR 9781. *Peças de concreto para pavimentação* – Especificação e método de ensaio. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 2013.

MEHTA, P. K.; MONTEIRO, Paulo J. M. Concreto: microestrutura, propriedades e materiais. 2. ed. São Paulo: IBRACON, 2014. 674 p.

TEIXEIRA, Rafael Silva. **Avaliação da resistência mecânica de blocos de concreto intertravados produzidos com resíduos da construção de demolição como agregado miúdo**. 77 f. (Graduação em Engenharia Civil), Universidade do Estado de Santa Catarina, Joinville, 2015.

Email: <u>adriana.santos@udesc.br</u>¹. Departamento de Engenharia Civil, Centro de Ciências Tecnológicas, Universidade do Estado de Santa Catarina – UDESC.

Rua Paulo Malschitzki, s/numero - Campus Universitário Prof. Avelino Marcante - Joinville, SC, Brasil.