ANÁLISE DO POTENCIAL DA MISTURA SOLO-CAL DE ABRANDAR OS PROCESSOS EROSIVOS EM VIAS NÃO-PAVIMENTADAS COM O USO DO APARELHO DE INDERBITZEN

Ronaldo Vargas Lopes Ana Elza Dalla Roza

Universidade do Estado de Mato Grosso Universidade do Estado de Mato Grosso

RESUMO

Os processos erosivos são considerados os principais agentes de deterioração das estradas não-pavimentadas e por consequência da constante necessidade de reparo das mesmas. Diante de tal quadro, este trabalho visa determinar o potencial uso da mistura solo-cal na construção dessas vias, atuando como medida mitigadora desses processos. Para tal serão utilizadas amostras de solo laterítico da região de uma estrada rural de Sinop-MT estabilizados com adição de cal, que serão submetidas ao Ensaio de Inderbitzen para determinação do seu índice de erodibilidade, sendo os resultados comparados aos resultados do solo sem estabilização.

1. INTRODUÇÃO

O objetivo deste trabalho é quantificar quanto a adição de cal modifica a erodibilidade de um solo argiloso laterítico. Tal análise destina-se a determinar se a mistura solo-cal constitui uma alternativa viável para construção de estradas rurais, ao atuar como um atenuador dos processos erosivos.

Tal análise se dará através da determinação do teor ótimo de cal a ser adicionado ao solo para sua estabilização através do método físico-químico, sendo tal teor utilizado na confecção de corpos de prova de solo-cal que serão submetidas ao ensaio de Inderbitzen para determinação de sua erodibilidade. Além disso, corpos de prova confeccionados apenas com o solo *in natura* serão ensaiados, servindo como parâmetro para a avaliação.

2. METODOLOGIA

2.1. Ensaio físico-químico

Este ensaio foi elaborado por CHADDA em 1971 como um método de dosagem para solocimento (CHADDA, 1971 *apud* RODRIGUES, 1992), mostrando-se pertinente à dosagem de solo-cal devido à semelhança das reações que ocorrem no solo-cal.

O ensaio consiste na separação de amostras de solo de 20g às quais são adicionados teores crescentes entre 0% e 12% de cal. Em seguida essas amostras são dissolvidas em provetas contendo 250 ml de água destilada, que são então agitadas para homogeneização. As provetas são deixadas em repouso no primeiro dia, e nos dias posteriores o material é homogeneizado com auxílio de um bastão metálico e deixado em repouso por 2 horas, ponto no qual é feita a medição do volume de material sedimentado. A medição deve continuar até que os volumes sedimentados sejam constantes ou decrescentes.

Com os dados obtidos, cria-se então uma curva onde o teor de cal (%) corresponde à abscissa, sendo a relação entre o volume sedimentado de cada teor de cal e o volume sedimentado do solo não tratado (ΔV %) correspondente à ordenada. O teor ótimo de cal a ser adicionado corresponderá ao ponto máximo da curva.

2.2. Ensaio de Inderbitzen

Inderbitzen (1961) foi o criador deste ensaio, que tem por objetivo simular o processo de erosão de um solo ao submetê-lo a um canal hidráulico artificial.

O primeiro passo para realização deste ensaio é a confecção dos corpos de prova, que são moldados em moldes cilíndricos de 10 cm de diâmetro e compactados segundo os critérios da ABNT 7182, os quais passam por um processo de cura de 7 dias para que haja tempo para que reações da cal no solo ocorram.

Em seguida, as amostras são submetidas ao ensaio de Inderbitzen, que é realizado com o uso de um aparelho simples, constituído por uma rampa inclinação ajustável que possui um orifício circular em seu centro. As amostras são encaixadas no orifício da rampa, e então um fluxo constante que escoa pela rampa é iniciado e atinge a superfície da amostra, submetendo-a assim a um fluxo laminar, sendo o solo lixiviado coletado em um prato coletor no fim da rampa. Depois que se inicia o ensaio, o material lixiviado é coletado nos intervalos de 1, 5, 10, 15 e 30 minutos em seguida peneirado nas peneiras #50, #100 e #200. O material lixiviado então é seco em estufa e pesado.

A erodilidade será mensurada como o percentual entre o peso seco do material lixiviado em relação ao peso total da amostra, seguindo o proposto por Heidemann (2008 *apud* Quirino *et al* 2004), que quantifica a erodibilidade de um solo em intervalos de 5%, a desprendida durante a realização do ensaio

A inclinação escolhida é de 10% para simular a baixa inclinação do greide das estradas e a vazão escolhida foi fixada em 50 mL/s, de acordo com o proposto por Ide (2009), que é correspondente a uma precipitação de 28 mm em 30 minutos no município de Bauru-SP, sendo tal escolha justificada pelo fato de que muitos autores a adotaram em suas pesquisa e por ser uma vazão que melhora o desempenho do equipamento.

2.2. Resultados esperados

Espera-se que a adição de cal aos solos locais auxilie no controle da erosão. Tal hipótese se baseia no fato da mistura solo-cal apresentar maior resistência e menor permeabilidade em relação ao solo não tratado, levando o material a ser mais estável quando exposto à água. Além disso, Azevêdo (2010) afirma que os produtos das reações pozolânicas da cal geram um aumento da resistência do solo contra a ação da água, tanto gerada por chuvas, como também por capilaridade, pois o aumento da coesão do solo faz com que o mesmo se torne menos suscetível.

REFERÊNCIAS BIBLIOGRÁFICAS

AZEVÊDO, André Luis Cairo de. Estabilização de solos com adição de cal: um estudo a respeito da reversibilidade das reações que acontecem no solo após a adição de cal. 2010. 178 f. Dissertação (Mestrado) - Curso de Engenharia Geotécnica, Núcleo de Geotecnia, Universidade Federal de Ouro Preto, Ouro Preto, 2010. IDE, D. M. Investigação geotécnica e estudo de um processo erosivo causado por ocupação urbana. Dissertação de Mestrado (Mestrado em Geotecnia). Universidade de São Paulo, São Carlos – SP, 2009. INDERBITZEN, A. P. L. An erosion test for soils. Material Research. Standards, Philadelphia. P 553-554. 1961. QUIRINO, G. H. A.; et al. Erodibilidade de Solos: Comparação entre os Ensaios Inderbitzen Modificado e Slaking Test. XVII Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica. 6 p. 2014 RODRIGUES, Maria da Glória Marcondes. Contribuição ao estudo do método físico-químico. 204p. Tese (Mestrado em Ciências em Engenharia Civil) – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1992.