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ABSTRACT
Cameras with higher resolutions are more commonly being used in surveillance systems to detect and track vehicles.
Higher resolutions cause an increase in processing times on feature-based tracking algorithms. The objective of
this paper is to evaluate the impact of video resolution during the detection process on feature-based tracking
algorithms. 32 videos were originally recorded in 1080p, totaling 394 recording minutes, and were converted into 5
different resolutions. To evaluate the results, manual counts were compared with automatic counts generated by an
algorithm implemented by the author. Results show that detection rate errors are higher on lower resolutions, such
as 428 x 240. On the other hand, higher resolution videos used more processing time to complete. In conclusion,
videos with an intermediate resolution, such as 704 x 480, are recommended for feature-based tracking algorithms.

RESUMO
Câmeras com resoluções maiores vêm sendo cada vez mais usadas em sistemas de monitoramento de tráfego para
detectar e rastrear veículos. A maior resolução causa o aumento nos tempos de processamento dos algoritmos
de detecção baseados em features. O objetivo deste trabalho é avaliar o impacto da resolução do vídeo durante
o processo de detecção de veículos em algoritmos de rastreamento por Features. Os 32 vídeos originalmente
capturados a 1080p, totalizando 394 minutos de gravação, foram convertidos em outras cinco resoluções avaliadas.
A avaliação do algoritmo em cada resolução de vídeo foi feita através da comparação da contagem veicular manual
com as saídas automáticas do programa implementado pelo autor. Os resultados mostraram que os erros de
detecção foram maiores nos vídeos com baixa resolução, como 428 x 240. Por outro lado, nos vídeos com as
maiores resoluções, a maior diferença foi no tempo de processamento. Pode-se concluir que vídeos com resoluções
intermediárias (704 x 480) são indicados para algoritmos baseados em rastreamento por Features.

1. INTRODUCTION
Contemporary solutions to solve the problems of traffic congestion and issues on traffic networks
are based on the availability of data. Better information on what is happening on the network
enables for better decision-making by administrators.

The information collected from the network is getting increasingly reliant on traffic surveillance,
involving cameras distributed in key points, in a movement to distance itself from manual data
collection. Because of that, better vehicle detection and tracking systems are all on demand.

Coupled with the increasing need for surveillance cameras, there was an improvement on the
quality of the images created by those devices. Cameras went from a 100 x 100 pixel resolution,
on the first digital camera created [Sasson, 2007], to almost ubiquitous smartphone cameras that
can record videos at 4K resolutions (3840 x 2169) at 60 frames per second.

The evolution of camera resolutions intensified an already existing problem for algorithms trying
to extract information from images: processing time. Although computers have become more
powerful, algorithms involving detection of objects are demanding. They usually use sliding
windows to find an object, as in the case of SVMs (Support-Vector Machines) [Cortes and
Vapnik, 1995] or Neural Networks [Rumelhart et al., 1985], or process images searching for
specific combination of pixels, as in the case of Feature Tracking [Shi and Tomasi, 1994].
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On this paper, we propose a method to identify whether resolution changes affect performance
on a Feature-based Tracking algorithm for the detection of vehicles.

2. FEATURE TRACKING
In a feature-based tracking algorithm, features can be corners of an object, borders, points
of interest, or any characteristic that makes the object distinct from the background. In the
particular case of tracking vehicles, changes on weather and vehicle overtakes creates cases
where occlusion and luminosity changes are common. Because feature detectors abandon the
idea of tracking the whole vehicle, the negative effect on the detection on those situations is
decreased. [Saunier and Sayed, 2006].

Feature detection, although important, is just the first step that a tracking algorithm must
complete. After the detection, the features must be grouped together in what is called a vehicle
hypothesis. Grouping is considered a critical point of feature-based tracking [Cavallaro et al.,
2005].

Several authors suggest improvements and solutions for the grouping problem, but no technique
was able to maintain a good performance under all circumstances. Beymer et al. [1997] were
able to achieve a detection rate of 75.2% on North American highways. Coifman et al. [1998],
on different traffic conditions and luminosity, were able to detect between 75% and 97% of the
vehicles. Collins et al. [2005] had to initialize feature tracking manually, selecting important
points of each vehicle, achieving good results.

More recently, Jazayeri et al. [2011] proposed a method using Harris Corner Detection, which
attributes different weights to each region of the image based on their intensity changes, to detect
features on a vehicle. This technique, coupled together with a line detector and a light intensity
peak detector, achieved a detection rate of 86.6% on their tests on different videos. Lin et al.
[2012] suggest the use of two distinct classes of features. The first class of features are selected
based on a training database, with common features for a vehicle. The second class of features
are all border related, detecting features on the edge of vehicles. The algorithm was able to
detect 90% of the vehicles on the tested videos. Do and Woo [2016] proposed a method to
track vehicles based on the Shi-Tomasi algorithm [Shi and Tomasi, 1994] and on [Lowe, 2004].
The combination of those two methods was successful, but only the tracking of features was
analyzed – vehicle tracking was not measured. Shih and Zhong [2017] also used Shi-Tomasi
to find borders and corners. Feature grouping was done by using the relative distance between
detected features and their algorithm achieved 90% of detection rate.

On this work, we used a similar approach with the one suggested by Shih and Zhong [2017], with
Shi-Tomasi being responsible to detect features and the Euclidian distance to group features.

3. PROPOSED METHOD
The hypothesis proposed in this paper is that there is no impact using different video resolutions
on a feature-based tracking algorithm to vehicle detection. Themethod consists in converting the
original footage, recorded in 1920 x 1080 pixels, to several different common resolutions. The
videos were then used as the input in a feature-based tracking system and all the vehicles were
counted for each resolution. The feature-based trackingmethod on this paper uses a combination
of corner detectors [Shi and Tomasi, 1994] and optical flow [Lucas et al., 1981] to detect and
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track vehicle features across the frame, implemented and proposed by Marcomini [2018].

The detected features are then grouped by their Euclidian distances and the vehicle is counted
as it reaches the end of the region of interest. The result is a comparison of all the automatic
counts with the manual count. A flowchart of the method can be seen in Figure 1.

Figure 1: Flowchart of the proposed method.

For a better understanding of the traking algorithm used to create the automatic count of vehicles,
a flowchart of the method proposed by Marcomini [2018] can be seen in Figure 2. All videos
have their perspective changed, to eliminate the influence of different camera angles. The
resulting frame has it’s background removed, using an adaptive Gaussian mixture model known
as MOG2 [Zivkovic, 2004], and features are detected. All detected features are tracked and
grouped in vehicle hypothesis, which is then extracted as data files from the system.

Figure 2: Flowchart of the detection algorithm based on Marcomini [2018].

All functions on the used algorithm are implemented in Python 2.7, using the OpenCV 2.4
library [OpenCV, 2019].
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4. DATA
In total, we analyzed 32 videos for each resolution presented in Figure 1, totaling 394 minutes
of footage recorded on the same day. The cameras were placed on top of a footbridge, over an
avenue, with no intervention on the local traffic and centered on the line dividing lanes. All
original videos have a resolution of 1920x1080 pixels, recorded at 30 frames per second (FPS).

Half the videos (16) were recorded with the camera pointing to the same direction of the traffic
flow. That way, vehicles appear on the bottom of the frame and vanish on the top. The other
16 videos were recorded against traffic flow, at the top of the same footbridge, at the same time.
Vehicles enter the frame on the top and leave on the bottom. Examples of angle and direction
of the videos can be seen in Figure 3.

Figure 3: Videos recorded both in the same direction and against the traffic flow.

It was important to keep conditions constant through all recorded videos, so we would be able
to isolate the possible effects only of the resolution changes.

5. RESOLUTION CHANGE
Given that the original videos were recorded at 1920x1080 pixels, it was necessary to create other
instances of the same files, but with different resolutions. For that purpose, we implemented a
method in Python using the functions available in the OpenCV library. More specifically, we
used the function cv2.resize(), which takes as parameters the frame to be converted and the new
desired size, with the option to choose from a range of interpolations. The default conversion
algorithm uses a geometric transformation based on bilinear interpolation OpenCV [2016]. On
this conversion, the intensity of the pixel to be scaled up or down, pixel (x,y) on Figure 4, is
determined based on four diagonal closest neighbors on a 2 by 2 window, pixels (x1,y1), (x2,y2),
(x3,y3), (x4,y4) [CambridgeInColour, 2019].

The hypothesis of this paper is to analyze the effects on vehicle detection when the resolution

Ana
is 

33
º A

NPET: V
ers

ão
 Prel

im
ina

r



Figure 4: Undetermined intensity pixel (x,y) and closest neighbors.

changes. Therefore, it’s important to isolate the changes from other common variables on traffic
images, such as lighting and vehicle sizes. By using the same videos, but converted to several
different resolutions, we aim to reduce the effects of grouping errors that different vehicles sizes
have on feature-based tracking algorithms. Since the only variable that changes between the
videos is the resolution, the difference in vehicle counting can be associated with the resolution
change.

6. VEHICLE COUNTING
In order to compare the performance of several different resolutions, we manually counted
vehicles in all 32 videos and registered the number of vehicles at every minute mark. An
example of the procedure can be seen in Table 1.

Table 1: Manual vehicle counts grouped by minute.

Video 1 Video 2 Video 3
Time (min) Frame no. Vehicles Frame no. Vehicles Frame no. Vehicles

1 1793 11 1800 13 1774 16
2 3630 12 3640 14 3602 11
3 5395 2 5494 11 5406 17
4 7313 13 7296 13 7247 12
5 8979 11 9127 13 9065 12
6 10837 11 10843 12 10792 15
7 12607 11 12664 12 12573 10
8 14401 10 14410 15 14528 18
9 16205 4 16158 13 16400 16

10 17986 11 18013 17 18036 15
11 19878 13 19802 19 19788 9
12 21581 10 21596 12 21580 11
13 23788 19 23653 10 24193 9

138 174 171

By using the values for each minute on our manual count to compare with the automatic count
for each resolution, we were able to extract an absolute average detection error (using Equation
1) for each video. This absolute average detection error is calculated based only on positive
numbers, so if the error observed on a specific minute is negative (automatic count smaller then

Ana
is 

33
º A

NPET: V
ers

ão
 Prel

im
ina

r



manual count), the absolute value will be used. For example, in Table 2, it is possible to notice
that all detection errors are positive numbers. Thus, by calculating the average of all values,
the total detection error on that video will be 6.5%. By using this method instead of counting
the total number of vehicles on the entire video and comparing the total values, we aim to
diminish the effect of accumulated errors. For instance, if the algorithm counts one less vehicle
at a minute and then counts one extra vehicle later, the total detection error would be 0%. By
separating each minute, we compute this localized error in the total.

AbsError =

∑m
1

nman

naut

m
(1)

where: m = Video duration, in minutes;
nman = Manual vehicle count;
naut = Automatic vehicle count.

Table 2: Detection errors on one 352 x 240 resolution video.

Time (min) Frame no. Manual Count Automatic 352x240 Detection Error
1 1793 11 11 0.0%
2 3630 12 12 0.0%
3 5395 2 2 0.0%
4 7313 13 14 7.7%
5 8979 11 12 9.1%
6 10837 11 10 9.1%
7 12607 11 12 9.1%
8 14401 10 9 10.0%
9 16205 4 4 0.0%

10 17986 11 10 9.1%
11 19878 13 13 0.0%
12 21581 10 12 20.0%
13 23788 19 17 10.5%

6.5%

7. RESULTS
In order to easily observe the distribution of detection error of all 32 videos, grouped by
resolution, histogram plots can be seen in Figure 5.

Based only on the histograms, it’s possible to notice that detection errors tend to concentrate
more on smaller values on intermediate and high resolutions, from 704 x 480 to 1920 x 1080,
resulting in less detection errors overall.

The descriptive statistics of all detection errors can be seen on the boxplot graphic in Figure 6.
Each boxplot represents data from all videos of one resolution. To calculate the values, such
as first quartile, average resolution error, and third quartile, data from all 32 videos of each
resolution was used, i.e., to extract the average resolution error value for the resolution 352 x 240,
we summed all detection errors of all videos on that resolution and divided the value by the
number of videos. The equation used can be seen in Equation 2. All different vehicles categories
- motorcycles, cars, trucks, busses - are grouped together on the counts, since the objective of
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Figure 5: Histogram plots of vehicle counting errors for each resolution.

this paper is to analyze the effect of resolution changes on the overall detection rate, although
the variation on vehicle’s sizes present a challenge for grouping features, as demonstrated by
Marcomini [2018] and others.

AvgResErr =

∑nvid
1 AbsError

nvid
(2)

where: AvgResErr = Average detection error of a specific resolution;
nvid = number of videos (32);

AbsError = Absolute average error, from Equation 1.

It is possible to notice that at the lowest evaluated resolution, 352 x 240, 75% (3º quartile) of
the encountered detection errors happened below the 11% margin. In other words, in 75% of all
evaluated videos, the feature-based tracking algorithm incurred errors that were lower or equal
to 11% in the counting process. Although that is not a bad tracking and counting performance,
this result is still the worst observed in all evaluated resolutions.

The best result can be seen on the 704 x 480 resolution, where 75% of all detection errors were
below 6%. Two other resolutions also presented a satisfying performance. At 854 x 480 and
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Figure 6: Boxplot of the detection errors grouped by resolution.

1920 x 1080, detection errors were equivalent between each other.

The results indicate that low resolutions may incur in greater detection errors. Since vehicles
are represented by a small number of pixels, the feature-based tracking algorithm suffers to
encounter relevant points to track. However, the opposite is not true. High resolutions, in our
tests, did not outperform other lower resolutions.

In order to validate the null hypothesis that resolutions do not present a difference between each
other, a Kolmogorov-Smirnov test was applied in the sample. Since 32 videos have been tested,
our sample size is 32. For that sample size, the critical value to α = 5% is Dcritical = 0.24. If
the critical value is lower than 0.24, it’s not possible to reject the null hypothesis that the error
distribution between the two videos are different. The results of the tests can be seen in Table 3

Table 3: Comparison for Kolmogorov-Smirnov results. A green check denotes equal
distributions while a red check denotes different distributions.

Kolmogorov-Smirnov Test (Dcritical = 0.24)
352x240 428x240 704x480 854x480 1280x720 1920x1080

352x240 - 3 7 7 7 7

428x240 - - 7 7 7 7

704x480 - - - 3 3 3

854x480 - - - - 3 3

1280x720 - - - - - 3

For lower resolutions (352 x 240 and 428 x 240), the Kolmogorov-Smirnov test passed, so it’s not
possible to reject the hypothesis that the error distributions are different. But, when compared to
higher resolutions, the test failed, indicating that there is a difference between higher resolutions
and lower ones.

When comparing the average processing times for each resolution, the two higher resolutions
tested, 1280 x 720 and 1920 x 1080, took more time to process all video files but did not had
a proportional gain in vehicle detection. At our highest resolution, 1920 x 1080, the algorithm
took, on average, 422 minutes to process 394 minutes of footage, exceeding the recording time
in 7%, as can be seen in Figure 7.

Ana
is 

33
º A

NPET: V
ers

ão
 Prel

im
ina

r



Figure 7: Total average processing time of different resolutions compared to the total time
of evaluated footage.

In conclusion, our tests suggest that low resolutions, such as 352 x 240 or 428 x 240, are not
recommended for a feature-based tracking algorithm, although its processing time is significantly
lower than other resolutions. Not enough pixels are used to represent vehicles and, therefore,
feature detection and tracking are impaired. High-definition resolutions do not suffer from this
issue. However, greater amount of pixels do not represent a significant detection gain over
intermediate resolutions, such as 704 x 480 or 854 x 480. Furthermore, HD resolutions incur
in greater processing times. Intermediate resolutions, on the other hand, showed an equivalent
detection rate to high resolutions, with a smaller processing time. Based on these results, it is
recommended to use intermediate resolutions, such as 704 x 480 or equivalent in other aspect
ratios, to decrease processing times while keeping the detection error rate at similar levels with
higher resolutions.

8. CONCLUSION
The hypothesis proposed in this paper was that there is no impact on vehicle detection of a
feature-based tracking algorithm using different video resolutions. This hypothesis was rejected
for videos with smaller resolutions, but accepted for higher resolutions. We analyzed 32 videos,
comprising of 394 minutes of footage, comparing the results of automatic vehicle counts to
manual vehicle counts. As a result, our tests suggest that the use of low resolutions have a
bad impact on feature-based tracking algorithms, incurring in greater detection errors. Since
less pixels are used to draw vehicles, farther vehicles are grouped together in one single object.
We also concluded that high resolutions, such as HD or full HD, do not represent a gain in
vehicle detection and have a negative impact on processing times. Consequently, intermediate
resolutions, such as 480p (704 x 480 or 854 x 480), are recommended for feature-based tracking
algorithms and present the best results in our tests, both on detection rate and processing time.
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