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ABSTRACT 

Difficulties recognizing and analyzing the environment are examples of technical challenges impairing a short-

term adoption of full-automated vehicles. Hence, drivers are still supposed to be available for occasional control, 

but with sufficiently comfortable transition time. This work aims to advance existing knowledge on the influence 

of non-driving related tasks (NDRT) engagement over driver’s ability to regain manual control while conducting 

a partially automated vehicle under complex situations. For this purpose, experiments with licensed drivers are 

conducted through a driving simulator hardware running a busy urban scenario within the CARLA autonomous 

urban simulator, so that driver’s takeover performances may be analyzed. 

 

1.  INTRODUCTION 

Automation is a technology by which a process is performed with reduced or minimum 

human intervention (GROOVER, 2007), and aims to improve human safety and comfort 

(SHERIDAN, 1992). Specifically to the automotive context, automation exists as driver 

support systems (DSS), which make the driving task more efficient, comfortable and safer for 

drivers (BISHOP, 2000). DSS together with Connected Vehicle (CV) technologies are able to 

support part of driving tasks such as acceleration or deceleration, as well as keeping the car 

centered within the road lane without driver interference. Vehicles can even take actions 

automatically to avoid hazard (YUE et al., 2018). 

 

A large number of studies have estimated the effectiveness of DSS technologies, either on 

field tests or through simulated scenarios (YUE et al., 2018; ENDSLEY, 1999; CICCHINO, 

2017; REAGAN; MCCARTT, 2016; GOLD et al., 2016). Yue et al. (2018) summarized most 

of the Connected Vehicles and Driving Assistance (CV&DA) research involving technologies 

used in the last ten years in order to provide a general estimation of CV&DA effectiveness. 

The study analyzed the usage of each CV&DA system alone and integrated, applied to light 

vehicles and heavy trucks. Results showed that CV&DA technologies could lead to a 

reduction of 33% and 41% in crashes to light vehicles and heavy trucks, respectively. 

Furthermore, it was found that CV&DA technologies could lead to a 70% crash avoidance 

rate while operated in the real-world environment. The paper indicated also that 35% of the 

near-crash events could be avoided by FCW under fog conditions. The literature suggests that 

safety is improved significantly with Driver Support Systems (DDS). The more equipped with 

such technologies a vehicles is, the safer it becomes to its occupants. There are several levels 

of automation, which a vehicle can operate with. Its classification is usually based on how 

many and which technologies the vehicle is supported by or the required amount of driver 

intervention and attentiveness. 

 

The levels of automation are categorized according to the degree to which the system is able 

to execute the tasks necessary for driving, such as executing of steering, monitoring the 

environment, determining when to change lanes, turning, using signals, etc. The differences 

between all levels defined by the Society of Automotive Engineers (SAE) international 

standards are shown in Table 1 below. 
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Table 1: SAE  International (2014) Automation Levels 

 
 

The capacity of monitoring the environment is the bottleneck of a fully automated system. It’s 

not difficult to understand the reason as there are many relevant aspects of the real-world 

environment that must be taken into consideration so that the system is capable of producing 

the best solution for each and every situation. Difficulties recognizing and analyzing the 

environment are examples of technical challenges impairing a short-term adoption of full-

automated vehicles. Endsley (1999) even suggests that, by keeping the human involved in 

some operations, an intermediate LOA may provide better overall performance when 

compared with highly automated systems lacking any human involvement. Furthermore, there 

are other issues associated with developing such technology that transcend computational 

bottlenecks. The human factor is determinant for the future of automation as it depends on 

how reliable people feel using the technology. 

 

Several studies have reproduced experiment scenarios using driver simulation environments 

focusing on answering to how drivers manage take-over situations. Eriksson and Stanton 

(2017) summarized the modality and the takeover-request lead and reaction times found by 

twenty-five studies conducting take-over time experiments. The mean take over request lead-

time calculated for all studies is 6.37s, while the mean take over request reaction time found is 

3.04s. According to Petermeijer et al. (2017) switching tasks demands lots of mental effort 

from a person because he or she needs to use the sensory state, switching his or her gaze from 

the Non-Driving Related Task (NDRT) to the road, motoric state taking the hands back on 

steering wheel, and cognitive state, re-configuring response rules or mental task sets. While 

using NDRT during travel time increases driver workload and decreases take-over quality, a 

state of cognitive underload may equally affect the driver’s take-over performance, as he or 

she could get tired by monitoring the automated vehicle for an extended period (NAUJOKS et 

al., 2018). 
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Most of the studies comprising take-over reaction performance in the last two years were 

conducted through experiments involving driving simulators (NAUJOKS et al., 2018; 

ERIKSSON & STANTON, 2017; STANTON et al., 2017), and much has been achieved on 

how drivers manage the so-called take-over situations. However, there is still a long way to go 

until level of automation 3 or 4 can be safely deployed (KYRIAKIDIS et al., 2017). The 

majority of the researchers focused on conducting the experiment scenarios in rural areas with 

high visibility and low traffic density. Consequently, driver’s take-over performance still 

needs to be analyzed while the drivers is subjected to stressful situations, such as under fog or 

pouring rain, or exposed to complex urban scenarios like crossing a busy roundabout. For 

example, Shen (2017) suggested evaluating driver interaction with urban scenarios, high 

traffic density and prolonged NDRT periods engagement before taking over, so that an even 

slower response to emergencies could be observed. 

 

There are not many simulators capable of reproducing an urban environment for driving 

simulation purposes, including cross traffic, pedestrians, traffic rules, etc. In order to enable 

the simulation of these environments, a team of digital artists created the CARLA (Car 

Learning to Act) Simulator. It has been developed to support training, prototyping, and 

validation of autonomous driving models, including both perception and control. It provides 

urban layouts, a multitude of vehicle models, buildings, pedestrians, street signs, etc. The 

simulation platform supports flexible setup of sensor suites and provides signals that can be 

used to train driving strategies, such as GPS coordinates, speed, acceleration, and detailed 

data on collisions and other infractions (DOSOVITSKIY et al, 2017). 

 

 
Figure 1: CARLA Simulator screen (DOSOVITSKIY et al, 2017) 

 

The simulator’s environment is composed of both 3D models of static objects (buildings, 

infrastructure, vegetation, etc.) and dynamic objects (vehicles, pedestrians), which share a 

common scale, proportionally to the sizes of their respective object in reality (figure 1). The 

non-player vehicles are based on PhysXVehicles, the standard model by Unreal Engine 4. 

Other behaviors such as lane following, speed limits, decision-making on intersections and 

respecting traffic lights were also implemented (DOSOVITSKIY et al, 2017). 

 

2. OBJECTIVE AND METHODOLOGY 

This work aims to advance existing knowledge on the influence of Non Driving Related 

Ana
is 

33
º A

NPET: V
ers

ão
 Prel

im
ina

r



  

Tasks (NDRT) engagement over driver’s ability to regain manual control while conducting a 

partially automated vehicle under complex situations. For this purpose, experiments with 

experienced drivers are conducted through a driving simulator apparatus together with 

CARLA simulator in a busy urban scenario, so that driver’s takeover performances may be 

analyzed. The dependent variables considered include hands-on time (HOD), i.e. time 

between request and hands on steering wheel, take-over time (TOT), minimum time-to-

collision (TTC), horizontal gaze dispersion (HGD), brake application and crash probability. 

Traffic density will be constant throughout the experiment, and only drivers in the early 20’s 

to late 30’s will be invited to participate. Each participant will be required to perform five 

takeover requests, and they will be distributed randomly in two different groups. Half of them 

will be engaged in NDRT that demands more cognitive workload then the others. Results are 

expected to show shorter HOT and TOT, longer TTC, increased HGD and lesser brake 

application and probability of crash to the group engaged in a NDRT less demanding on 

cognitive workload.  
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